

D4.4b - INTEGRABILITY OF DESIGN MODELLING
SOLUTION

Stéphane Paul, Olivier Delande (Thales Research & Technology)

Document information

Document Number D4.4b

Document Title Integrability of design modelling solution

Version 1.0

Status Final

Work Package WP 4.4

Deliverable Type Report

Contractual Date of Delivery 31 January 2012

Actual Date of Delivery 23 January 2012

Responsible Unit Thales Research & Technology

Contributors TRT, UIB, UNITN

Keyword List Security engineering, change management

Dissemination level PU

Integrability of design modelling solution | version 1.0 |
page 2 / 66

Document change record

Version Date Status Author (Unit) Description

0.01 28/10/11 Working Stéphane Paul Outline

0.02 31/10/11 Working Stéphane Paul

Updated outline after

comments by Jan

Jürjens

0.03 17/11/11 Working Stéphane Paul
Chapter 2 (posted on

BSCW for UIB).

0.04 05/12/11 Working

Stéphane Paul, Olivier

Delande, Frank

Innerhofer-

Oberperfler, Philipp

Kalb

Document close to

completion.

0.05 16/12/11 Draft

Stéphane Paul, Olivier

Delande, Frank

Innerhofer-

Oberperfler, Philipp

Kalb

Submission for

consortium review.

0.06 22/12/11 Draft
Michela Angeli,

Stéphane Paul

Quality checked

(minor formatting

remarks).

0.07 23/12/11 Draft Olivier Delande
Internal quality

check.

0.08 23/12/11 Draft
Michela Angeli,

Stéphane Paul

Second round of

quality check (minor

formatting remarks).

0.09 03/01/11 Draft Stéphane Paul
Additional note on

traceability.

0.10 20/01/11 Draft
Federica Paci,

Jan Jürjens

Scientific and quality

review comments.

1.0 23/01/11 Final Stéphane Paul Final version

Integrability of design modelling solution | version 1.0 |
page 3 / 66

Executive summary

How to design large long-lived evolving software-intensive systems, with stringent
security concerns, in an industrial context, with rigid existing system engineering
processes and widely deployed workbenches?

On a methodological standpoint, the proposed approach is to orchestrate (as opposed
to integrate) security and system engineering concerns by two types of relations
between engineering processes: (i) vertical relations between successive security-
related processes; and (ii) horizontal relations between mainstream system
engineering processes and concurrent security-related processes. This approach can
be applied to the complete system / software lifecycle, from early security requirement
elicitation to runtime configuration and monitoring, via high-level architecting, detailed
design, development, integration and design-time testing.

In this deliverable we illustrate the methodological principles of the approach, with a
strong focus on change.

On a tooling standpoint, robust tool integration has by far our preference. However, the
integration must be both tight and loose. By loose integration we mean that each tool
should be useable independently from the complete system engineering workbench (if
so needed). By tight integration, we mean that the multiple models created by the
different tools of the different system / software stakeholders should be kept consistent
at all times, and it should not require overwhelming efforts to maintain this consistency.

In this deliverable, such a tight and loose integration is proposed between two Thales
tools: a SOA Modelling Suite v3.1 and a risk assessment tool called Rinforzando v2.5.

We also present an evaluation of languages and tools developed by TUD in WP4
during the course of the project, from an industrial point of view. We discuss the
interest of UMLsec and UMLchange in an industrial setting at the design level, and
provide feedback on the early prototype of the CARiSMA tool.

Integrability of design modelling solution | version 1.0 |
page 4 / 66

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 3

INDEX 4

1 INTRODUCTION 6

2 AN INDUSTRIAL INSTANTIATION OF THE SECURECHANGE
SECURITY ENGINEERING PROCESS 9

2.1 A critical analysis of previous project results 9

2.2 Security engineering process, an industrial view 11
2.2.1 A legacy activity-centric approach to security engineering 11
2.2.2 An industrial typology of change applied to security engineering 18
2.2.3 An industrial feedback on an academic proposal for change representation at the
design level 21

2.3 A focus on the design phase security modelling and change management using
the UMLsec & UMLchange languages 22

2.3.1 ATM use case: TCC physical arrival 23
2.3.2 The fair exchange analysis 24
2.3.3 Provable 25
2.3.4 Role-based access control 26
2.3.5 Concluding remarks 26

2.4 Instantiation using the “Integrated SecureChange Pr ocess” 27
2.4.1 Short introduction to MoVE modelling 27
2.4.2 Instantiation 28

3 ILLUSTRATION ON THE PROTOTYPES 32

3.1 Change management between security risk assessment and system / software
specification using the Thales prototype 32

3.1.1 Step 1: System specification using SMS 33
3.1.2 Step 2: Security risk assessment using Rinforzando 34

3.2 Evaluation of change management between early valid ation of security properties
and system / software design using CARiSMA 41

GLOSSARY AND ACRONYMS 48

REFERENCES 50

Integrability of design modelling solution | version 1.0 |
page 5 / 66

4 APPENDICES 51

4.1 Thales prototype installation manual 51

4.2 Thales prototype operator handbook (extract) 53
4.2.1 Risk assessment study initialisation 55
4.2.2 The “Risk Assessment for SMS” viewpoint 61

4.3 Quick insight on the prototype architecture 65

Integrability of design modelling solution | version 1.0 |
page 6 / 66

1 Introduction

Many large industries, like Thales, have adopted a clear strategy towards model-based
system and software engineering. The reasons behind that choice are mainly the
capability of such approaches to deal with the increasing complexity of software
intensive systems, whilst complying with ever increasing constraints on costs and
delays.

Now that the mainstream model-based system and software engineering practices
have risen in Technology Readiness Level (TRL), these large industries are starting to
examine how to extend their model-based engineering frameworks to cope with non
functional properties, such as safety, security and performance. A strong trend is to
envisage those specialty-engineering models as viewpoints (according to the ISO/IEC
42010:2011 [4] terminology).

The viewpoint approach allows for collaborative work on models between the
mainstream system / software engineering teams and the specialty-engineering teams.
It solves issues related to concurrent development and allows for the definition of clear
interfaces between the teams, in terms of concepts that are manipulated and in terms
of activities to perform by each team.

According the SecureChange technical annex, deliverable D4.4 - Proof of concept
integration of design modelling solution includes “an enhanced version of the
Thales modelling environment that provides a proof-of-concept integration of the
modelling solution produced in the WP. This will support a preliminary assessment of
the security design modelling solution and of its integratability into industrial model-
driven engineering environments”.

A first release of this document (D4.4a) was delivered at M24. This deliverable
discussed and provided a proof of concept tool for the integration of a security risk
assessment viewpoint with a UML modelling tool, namely Papyrus1. The reason for
focusing on the design-time phases of the system / software development lifecycle was
that it was assessed by Thales that the most critical decisions (in terms of programme
cost and delays) are taken during the early steps of system / software architecting and
design. It was thus important to address these steps as a priority. The proposed
security risk assessment viewpoint encompassed the overall process of risk
identification, risk analysis and risk evaluation2, as defined by ISO/IEC Guide 73.

The D4.4a document first discussed the issues behind the integration of the security
risk assessment viewpoint with the mainstream system / software engineering
viewpoint. The integration was addressed through three angles: (i) orchestration of the
processes; (ii) reconciliation of the concepts; (iii) integration through the technology.
The document then presented the first version of the proof of concept tool that was
developed; here, practical considerations about the workbench platform (e.g. UML,
Eclipse EMF, etc.) were considered. Since then, the tool has gone through a major

1 It is to be noted that at the time the UMLsec tool was also running on Papyrus, but using UML 1.4.

2 In fact the scope of the viewpoint extends slightly beyond the classical acceptation of risk assessment. It covers in particular part
of the implementation of a risk mitigation strategy, as is normally expected from a risk management approach. The viewpoint,
however, does not provide a complete risk management framework.

Integrability of design modelling solution | version 1.0 |
page 7 / 66

refactoring, to be redelivered at the end of the project as part of D4.4b. In particular,
the human-machine interface was dramatically improved. The document closed on a
series of annexes, mainly related to the risk assessment conceptual model and
methodology.

The present document (D4.4b) represents the second release of the deliverable. It has
been completely restructured and rewritten3 to reflect the work progress performed
during the third year of the project.

One of the major results of this last year (cf. §2.2) relates to integration through
orchestration of the processes4. Integration through the orchestration of processes is
performed by ensuring the consistency of the security engineering and risk assessment
activities concurrently with the activities of the mainstream system / software
engineering. When the mainstream system / software engineering approach iterates
the analysis and design at different abstraction levels (i.e. functional, logical and
physical levels), the consistency must be ensured throughout the abstraction levels,
vertically between successive activities, and horizontally between concurrent activities
(cf. §2.2.1). This work is extensively described herein, but it was also published as an
invited paper at ServiceWave’11 [1].

As expressed in D4.4a, change5 is the artefact that represents the glue between the
process activities. Understanding precisely the nature of change is therefore
paramount to the definition of a security engineering process and its orchestration with
the mainstream system engineering processes. Thus, a thorough typology of changes
applicable to security engineering and risk assessment has been defined (cf. §2.2.2).
Parts of these changes have then been prototyped (cf. §3.1).

The basic Thales modelling environment used as input for this prototyping is the
Thales SOA Modelling Suite (SMS). The enhanced version of the Thales modelling
environment resulting from the SecureChange work is SMS tightly and loosely
integrated with Rinforzando. The TUD CARiSMA tool is not integrated to the enhanced
version of SMS because: (i) the Thales modelling environment is not UML based, and
(ii) CARiSMA does not support DSL-based modelling environments. During Year 2 of
SecureChange, for D4.4a, Thales worked using Papyrus to ease the integration with
the TUD prototype, but that implied that the “modelling environment” was no more the
“Thales modelling environment” and that the tool assessments in that environment lost
their industrial value. Having an industrial environment was assessed by the Thales
SecureChange project manager, and main author of this document, as more important
in terms of project impact, than ensuring UML compatibility with the TUD prototype6.
This is the reason why the CARiSMA tool has assessed separately (see details below),
and the necessary model transformations from BPMN to UML were performed
manually to ensure the continuity of the security engineering process. Obviously, to be
fair with the tool, the evaluation Thales performed did not consider the lack of tool
integration as a detrimental factor for CARiSMA.

3 The content of D4.4a remains valid but, in order to save time, space and paper, it has not been copy-pasted in D4.4b. Interested
readers should refer to D4.4a. Still, D4.4b can be read as a standalone document.

4 As aforementioned, integration through the orchestration of processes was already addressed in D4.4a, but in much more
general terms.

5 Behind “change”, one finds “traceability”. Traceability is the means through which change can be managed. This deliverable
does not focus on traceability, but the state of the art in this domain has been given some attention, cf. [6].

6 This decision was proved right in terms of exploitation, cf. D8.3.

Integrability of design modelling solution | version 1.0 |
page 8 / 66

Compared to D4.4a, the work on processes in D4.4b was carried in much closer
cooperation with UIB, work-package 2 leader and main beneficiary of the “Living
Security Engineering Process” (defined in D2.1) and the “Integrated SecureChange
Process” (defined in D2.2). This cooperation allowed for the modelling of the state
diagrams implementing the Thales activity-driven process (of WP4) using the
SecureChange artefact-driven process (of WP2). Full details can be found in §2.3.

Another major contribution of D4.4b with respect to D4.4a is the extension of the scope
to cover early security engineering verification using CARiSMA, as provided by TUD
(cf. §3.2) in October 2011. The assessed version of CARiSMA implemented only7 a
sub-part of UMLsec, which had been ported on UML 2.0. Thus, we provide herein an
industrial evaluation of the UMLsec and UMLchange languages, on a conceptual
standpoint, as well as an evaluation of CARiSMA, on a practical standpoint, related
only to its implemented scope, i.e. a few UMLsec stereotypes.

A glossary completes the main part of this document. Terms used in this document and
defined in the glossary are crafted as hyperlinks to their definitions and visually
underlined.

This document closes on two annexes providing the Thales risk assessment tool
installation manual and an extract of the operator handbook.

7 The first version of CARiSMA known to implement UMLchange was demonstrated by TUD at the SecureChange GA meeting
mid-January 2012. This version could obviously not be assessed by Thales.

Integrability of design modelling solution | version 1.0 |
page 9 / 66

2 An industrial instantiation of the
SecureChange security engineering
process

This chapter describes an industrial security engineering process for lifelong adaptable
security-critical systems, orchestrated with a mainstream system engineering process,
in a tool-agnostic manner. It is structured as follows:

• Section §2.1 provides an industrial review of the academic work performed in WP2
and positions our industrial process with respect to the processes defined in WP2;

• Section §2.2 is the core section about the industrial instantiation of the
SecureChange process, with a focus on change as perceived by the industry.

2.1 A critical analysis of previous project results
In terms of “Integrated Security Process for Lifelong Adaptable Systems” two
SecureChange former deliverables are relevant:

• D2.1: An architectural blueprint and a software development process for security-
critical lifelong systems;

• D2.2: A configuration management process for lifelong adaptable systems.

Deliverable D2.1 provides a short state of the art of security engineering processes (cf.
§2.1) and architectures (cf. §2.2). It then states 5 requirements for the project’s new
change-driven security engineering process (cf. §3.1.3): (i) support of multiple
abstraction layers and of multiple engineering viewpoints / domains ; (ii) support of
collaborations amongst stakeholders, based on their respective responsibilities; (iii)
support of change propagation between viewpoints; (iv) seamless design-time and
runtime operations; and (v) support of information retrieval, and model consistency.
Based on these requirements, an artefact-driven “Living Security Engineering Process
(LSEP)” is proposed (cf. §3.1.4-5). The defined process is independent of the selected
artefacts, but five artefacts8 were identified together with their dependencies, in order to
specify change propagation in the specific case of the engineering of security-critical IT
systems (cf. §3.2). A large part of deliverable D2.1 then illustrates the process in an
industry-specific context (cf. §3.3) and from an architect-specific viewpoint, based on
change patterns (cf. §4-§5), before showing its applicability to a more comprehensive
engineering set-up (cf. §6). Deliverable D2.1 concludes on a generic architectural
blueprint designed to accommodate a broad set of changes: the Security as a Service
(SeAAS) approach (cf. §7).

Even though the “Living Security Engineering Process” defined in D2.1 is largely
illustrated on the engineering of security-critical IT systems, its theoretical description is
security-domain agnostic. It is in fact an artefact state-driven process to correctly
handle change, which can be applied to any domain-specific engineering, e.g. safety

8 Namely, the system model, the verification model, the risk model, the requirement model, and the test model.

Integrability of design modelling solution | version 1.0 |
page 10 / 66

engineering, performance engineering, etc. The process basically handles change on
models and model elements, irrespective of what those models represent. This can
clearly be seen from the five process requirements (see list above), in which the term
“security” never appears. This lack was corrected in D2.2.

After a short state of the art on change management processes (cf. §3.2), deliverable
D2.2 refines and instantiates the “Living Security Engineering Process” process for the
specific case of engineering security-critical IT systems (cf. §3.3). The instantiated
process is called the “Integrated SecureChange Process”. The instantiation is
performed in order to cover most9 of the engineering activities that are within the scope
of the SecureChange project, i.e. requirements modelling (WP3), system modelling
(WP4), risk assessment (WP5) and testing (WP7). This specialisation allows for a
much more detailed process description than what was presented in §3.2 of D2.1. In
particular, deliverable D2.2 describes the precise mapping between model concepts10
and a set of detailed state machines. There is one drawback however to the
“Integrated SecureChange Process” with respect to the “Living Security Engineering
Process”, which makes it a comparatively light-weight process: instead of operating on
different model element types, the basic unit of change of the “Integrated
SecureChange Process” is a complete model. In other words, the fine-grained change
propagation process has become a coarse-grain propagation process. There is
however an advantage of this limitation: the change propagation process can now
operate on black box models. Deliverable D2.2 then proceeds by presenting a tool
support for the “Integrated SecureChange Process”, called MoVE (cf. §4), whilst the
SeAAS approach is refined (cf. §5). The remainder of deliverable D2.2 describes the
application of both the “Living Security Engineering Process” and the “Integrated
SecureChange Process” on the SecureChange project’s ATM and HOMES case
studies (cf. §6-§7).

From the above, it can be seen that deliverables D2.1 and D2.2 have proposed two
new processes based on a shift a paradigm, from the legacy activity-centred
organisation of the engineering lifecycle to an artefact-driven approach. From an
industrial point of view, this paradigm shift raises a number of issues:

• it wipes the slate clean of all legacy processes , most of which are activity-driven
processes with clearly defined inputs (pre-requisites) and outputs (post-conditions);
the integration of an artefact-driven approach with existing legacy processes is not
straightforward;

• it is intrinsically event-driven (i.e. each change is a new trigger to the process),
which raises questions on the repeatability of the process 11; solving this issue
is necessary before certifying the engineering process;

• the state diagrams of the artefacts , and thereof the propagation of change
amongst artefacts, are currently independent of the contractual / lega l status of
the models ; in a commercial set-up, with the hypothesis of a multiple-abstraction-
layers engineering approach, layers are progressively reviewed and signed by the
customer as work progresses; change events need to propagate between artefacts

9 Compared to D2.1, verification is not covered.

10 E.g. an “asset” is a concept present both during requirements modelling and risk assessment, but it may not have exactly the
same meaning in both models.

11 In other words, would the engineering product be the same if change C1 occurs before change C2, with respect to C2 occurring
before C1?

Integrability of design modelling solution | version 1.0 |
page 11 / 66

not only on a simple technical basis (i.e. semantic concept dependencies), but also
on a commercial, legal and/or political basis.

From an industrial point of view, the drawbacks of the “Integrated SecureChange
Process” presented above can be overcome by combining a legacy activity-centric
approach with the SecureChange artefact-driven approach in order to get the best of
both worlds:

• the legacy activity-centric approach deals with the domain specifics and the know-
how of the organisation in terms of process decomposition and sequencing of
activities; it also copes with all the commercial, legal and/or political constraints, as
well as the norms and regulations in order to be recognised as a viable security
engineering process that can be used to develop certified products;

• the artefact-driven approach deals with the mechanics to implement the legacy
activity-centric process; it is practically transparent to the process end-users, i.e.
the security engineers, but also all the other mainstream system engineering
stakeholders; it ensures that change is propagated across models according to a
set of rules that are activated depending on the model and/or model element
states.

This fusion of a legacy activity-centric approach with the SecureChange artefact-driven
approach is the subject of §2.3. But first, a legacy activity-centric approach to security
engineering is presented in §2.2.

2.2 Security engineering process, an industrial vie w
This section presents Thales’ understanding of an industrial security engineering
process. It represents a detailed description of the process that was presented at
ServiceWave’2011 [1] and rests upon a number of internal Thales Group processes
[2][3]. This section is structured in two parts:

• Section §2.2.1 describes a legacy industrial activity-centric approach to security
engineering;

• Section §2.2.2 extends §2.2.1 with a particular focus on change as seen in an
industrial context.

Then, section §2.3 provides an example of how parts of this legacy industrial activity-
centric approach can be implemented using the SecureChange artefact-driven
approach.

2.2.1 A legacy activity-centric approach to securit y
engineering

A system / software lifecycle typically has eight phases as illustrated in Figure 1, on
page 17: (i) customer need analysis, (ii) specification, (iii) design, (iv) realisation or
acquisition, (v) integration and verification, (vi) validation and deployment, (vii)
operation and maintenance, and (viii) disposal. In some cases, a system / software
may occupy several of these phases at the same time. The process is also iterative.

System / software engineering relates to the design & development of a system /
software so that legitimate users can do what they want to do. Security engineering

Integrability of design modelling solution | version 1.0 |
page 12 / 66

relates to the design & development of a system so that illegitimate users cannot do
what they should not do. Thus, mainstream system engineering and security
engineering have different overall goals, and this justifies a specific speciality process
as defined herein for system / software security engineering.

It is possible to organise the security activities in three categories (each identified by a
different background colour in Figure 1):

• analysis-type activities, with in particular, threat, vulnerability and risk assessment
activities, which essentially produce security requirements;

• engineering-type activities, with in particular, the design and implementation of
security solutions that satisfy the aforementioned security requirements;

• qualification-type activities, with in particular, the collection of evidence and
accreditation of the system.

The system / software security engineering process can be conducted regardless of
the system lifecycle phase; however the pursued goals may significantly differ
depending on the phase. This section provides a coarse-grain description of the main
pursued goals during each phase.

2.2.1.1 During the customer need analysis

The need analysis phase is classically performed by the customer strongly supported
by industrial parties, using Enterprise Architectural Frameworks (EAF) such as the
American Department of Defence Architecture Framework (DoDAF)12, the English
Ministry of Defence Architecture Framework (MODAF)13, the French AGATE14, the
North Atlantic Treaty Organization Architecture Framework (NAF)15 or more recently, in
the civil world, the European ATM Enterprise Architecture (EAEA) framework. It
classically produces an overall understanding of the system (or system of systems),
and high-level end-user requirements as documented in one or more call-for-tenders.

In this phase, the main goal of security engineering is to elicit primary asset16 security
needs, mainly in terms of confidentiality, availability and integrity. This security
specification work may be consolidated by a light-weight threat source and feared
event assessment .

The elicitation of security needs of primary assets is typically a poor relation in the
Enterprise Architectural Frameworks mentioned above. It is important to understand at
this stage that we are working on security needs as expressed by the customer and/or
end-users, not on security requirements resulting from a formalised security risk
assessment process.

Security needs expressed by the customer and/or end-users are based on their own
perception of the risks, which strongly depends on:

12 http://dodcio.defense.gov/sites/dodaf20/.

13 http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/InformationManagement/MODAF/.

14 French for « Atelier de Gestion de l'ArchiTEcture des systèmes d'information et de communication », cf. http://www.ixarm.com/-
AGATE-.

15 http://en.wikipedia.org/wiki/NATO_Architecture_Framework.

16 Even though the identification of primary assets is an important step in any security specification work, we assume here that the
identification of primary assets is correctly performed by the mainstream system engineering using an EAF.

Integrability of design modelling solution | version 1.0 |
page 13 / 66

• an identification and assessment of threat sources, and in particular, how much
they trust their collaborators, equipment and/or environment; this is a “politically”
difficult activity to lead, as it is not easy to point to a collaborator as being
potentially untrustworthy; however, if we do not consider trust in the architecture,
security measures imposed on the system later might be heavier-handed than
necessary (i.e. the implementation may introduce pointless protection mechanisms
that just hinder operations in a trusted domain), or worst, miss the point (i.e. the
implementation of the system may implicitly assume trust relationships, amongst
users or between users and the system, that are simply not there);

• an identification and assessment of feared events, i.e. what can go wrong with
respect to the primary assets, as triggered by the threat sources, and how bad
would the consequences be.

When stating their primary asset security needs, the stakeholders (i.e. customer and/or
end-users) may overestimate or underestimate their risks. This will be determined later
during the risk assessment process. The important task here is to understand the
reasons behind these security needs, and in particular the socio-technical context that
supports those security needs.

The following phases, until operation, are mainly performed by the system / software
provider.

2.2.1.2 During the specification phase

During the mainstream system / software specification phase, the main goal of the
security activities is to gain early assurance that the proposed overall architectural
solution is sound with respect to security concerns. This is performed basically through
two activities:

• a threat, vulnerability and risk assessment;

• the specification of security requirements.

During this phase it is important to be able to quickly update requirements and models,
and bring them in synch. The end-customer might be involved in the loop and must be
able to do some form of what-if scenarios. Evidence is collected in order to contribute
later to the security assurance argument (cf. §2.2.1.6).

2.2.1.2.1 Threat, vulnerability and risk assessment

The threat, vulnerability and risk assessment process consists in identifying all risks,
and defining security objectives to reduce the unacceptable risks to acceptable levels.

The primary assets, their related feared events and security needs, as elicited during
the customer need analysis phase (cf. §2.2.1.1) are a key input to this work.

The other key input is the considered system / software baseline, including, if
applicable, the planned deployment configurations. The baseline can be represented in
a wide variety of forms:

• system / software requirements, some of which may already be explicitly tagged as
security requirements; these requirements will typically be stored in a requirements’
database such as DOORS;

• system / software models, as produced by the mainstream engineering activity,
some of which may correspond to specified security solutions;

Integrability of design modelling solution | version 1.0 |
page 14 / 66

• already existing system / software, some of which may be security solutions;

• any combination of the above.

The threat, vulnerability and risk assessment process will need to ensure the
traceability to the baseline, irrespective of the forms under which the baseline is
available.

If there are multiple planned deployment configurations in the baseline, the threat,
vulnerability and risk assessment process will need to be performed for each
deployment configuration, maximising the reuse of the analyses between the
deployment configurations.

Example: an Air Traffic Control system must be deployed at the 3 major airports of one
country. It is planned to be 1st deployed in shadow-mode at one of the airports, then
deployed operationally at that airport, and finally to be deployed operationally at the
three airports and interlinked with each other. The threat, vulnerability and risk
assessment process is performed for each deployment configuration, each time
ensuring the traceability to the subset of the baseline that deals with that configuration.

2.2.1.2.2 Specification of security requirements

The specification of security requirements process consists in transforming the
aforementioned security objectives (cf. §2.2.1.2.1) into security requirements, and
integrating those requirements into the baseline system / software requirements.
Residual risks are identified and all decisions are formally validated, in order to
proceed with the design.

2.2.1.3 During the design phase

During the design phase, a breakdown of the system / software is established. The
security design activity participates to this work by addressing the security related
non-functional constraints, as formalised during the specification of security
requirements (cf. §2.2.1.2.2). It results in the design of cost-efficient countermeasures
for the identified security risks, with minimal impact on the architectural solution.

Depending on the system / software complexity, the threat, vulnerability and risk
assessment process performed during the previous phase at a coarse-grain level (cf.
2.2.1.2.1) may be refined for some system / software components, based on the
detailed design knowledge elaborated during this phase. If such a refinement is
performed, the assessed risk levels17 at component-level will need to be aggregated
and compared to the risk levels established previously at a coarser-grained level (cf.
§2.2.1.2.1). This may result in a revision of the overall risk level and therefore on a
revision of the security requirements (cf. §2.2.1.2.2).

Evidence of the security design activity is collected in order to contribute later to the
security assurance argument (cf. §2.2.1.6).

Depending on the complexity of the security requirements (i.e. the level of expertise
required to handle them), the security design activity may be fused with, or kept
separate from the mainstream system / software logical and physical design.

17 In terms of likelihood of the threats and severity of the consequences.

Integrability of design modelling solution | version 1.0 |
page 15 / 66

2.2.1.4 During the realisation or acquisition phase

During the system / software realisation or acquisition stage, the main goal of security
engineering is to implement or acquire the security solutions as previously designed
(cf. §2.2.1.3).

Evidence of the realisation or acquisition of the security solutions is collected in order
to contribute later to the security assurance argument (cf. §2.2.1.6).

Depending on the complexity of the security design (i.e. the required level of expertise),
the security solutions realisation or acquisition activity may be fused with, or kept
separate from the mainstream system / software realisation or acquisition.

2.2.1.5 During the integration and verification pha se

During the system / software integration and verification stage, the main goal of
security engineering is to integrated and verify the security solutions as previously
implemented or acquired (cf. §2.2.1.4).

Evidence of the integration and verification is collected in order to contribute later to the
security assurance argument (cf. §2.2.1.6).

Depending on the complexity of the security solutions (i.e. the required level of
expertise to integrate and verify them), the security solutions integration and
verification activity may be fused with, or kept separate from the mainstream system /
software integration and verification.

2.2.1.6 During the validation and deployment phase

During the validation and deployment phase, the main goal of security engineering is
the security qualification of the system / software.

The qualification results must be fed back to the threat, vulnerability and risk
assessment and compared to the security objectives. Residual risks will need to be
identified and reviewed anew.

Accreditation is an official authorisation by management for the operation of a system /
software, and acceptance by that management of the associated residual risks [5]. It
establishes the extent to which the security controls are implemented correctly,
operating as intended, and producing the desired outcome with respect to meeting the
system / software security requirements. Accreditation is usually based on the
certification process as well as other management considerations.

2.2.1.7 During the operation and maintenance phase

During system / software operation, the main goal of security engineering is to
maintain the system / software under secure conditi ons . This is basically
performed by continuously monitoring the effectiveness of the countermeasures to
determine the extent to which the controls are operating as intended, and producing
the desired outcome with respect to meeting the security requirements for the system /
software. The different threat, vulnerability and risk assessment steps should also
be regularly revisited in order to cope with environmental and internal changes during
the system / software’s lifetime.

Integrability of design modelling solution | version 1.0 |
page 16 / 66

2.2.1.8 During the disposal phase

There is no bright line that separates "secure" from "insecure" forms of disposal. What
is appropriate in a particular situation depends on the sensitivity of the information at
issue, and the perceived threats to it. Therefore, one of the main security engineering
activities during the system / software disposal phase will be a dedicated security
threat, vulnerability and risk assessment . Similarly to the security threat,
vulnerability and risk assessment performed for the building of the system / software,
this activity will produce security requirements. These requirements will be handled by
the secure disposal process, including, but not limited to, shredding of paper media,
appropriate cleaning of electronic (i.e. magnetic or optical) media, and secure recycling
of valuable equipment.

Integrability of design modelling solution | version 1.0 | page 17 / 66

Figure 1: A legacy activity-centric approach to security engineering orchestrated with a mainstream system / software engineering V-cycle

Security
qualification /
certification

System / software
specification

(need analysis)

System / software
(logical & physical)

design

Realisation or
acquisition

System / software
integration &
verification

System / software
validation &
deployment

System / software
operation &

maintenance

System / software
disposal

Maintenance
under secure

conditions

Secure disposal

Le
g

e
n

d
: h
o

ri
zo

n
ta

l
co

n
si

st
e

n
cy

 r
e

la
ti

o
n

sh
ip

s

(c
o

n
c
u

rr
e

n
t

st
e

p
s)

v
e

rt
ic

a
l

co
n

si
st

e
n

cy
 r

e
la

ti
o

n
sh

ip
s

(s
u

c
c
e

ss
iv

e
 s

te
p

s)

Security assurance argument

Customer need
analysis

Security
specification

(requirements)

Security
design

Security
specification

(end-user needs)

Security solutions
realisation or
acquisition

Security solutions
integration &
verification

Evidence (including overall

security risk management process)Evidence

Integrability of design modelling solution | version 1.0 |
page 18 / 66

2.2.2 An industrial typology of change applied to
security engineering

2.2.2.1 Introduction

The overall security engineering process presented in §2.2.1 runs through the
complete system / software lifecycle, and therefore encompasses a large number of
changes which allow going from “I have an idea for a new system / software” to “the
system has been disposed of”, via the development of the said system and years of
secure and successful operations. This section provides an industrial typology of
change18 viewed from the threat, vulnerability and risk assessment point of view when
it is performed in parallel to the following mainstream system engineering activities (cf.
Figure 1 and §2.2.1.2.1):

• system / software specification (need analysis),

• system / software (logical & physical) design,

• system / software validation.

This scope covers the complete design-time activities under the responsibility of the
industry, which are performed in parallel to the threat, vulnerability and risk assessment
activity. The threat, vulnerability and risk assessment activity relies on the following
assumptions:

1. the existence of an initial set of system / software requirements, called “baseline”
(cf. Figure 2), which describes the system / software under study; the baseline
contains both functional and non-functional requirements, some of which may be
security requirements;

2. security needs (cf. §2.2.1.1) mainly but not exclusively expressed in terms of
confidentiality, availability and integrity, and potentially supported by:

a. a list of threat sources, with their related likelihood of action, and

b. a list of feared events, with their related severity, as expressed by the customer
and/or end-users.

Depending upon the item under study, the number of security requirements to consider
may range:

• from a few tens, for a not too security-demanding software,

• to a few thousands, for highly security-critical and complex industrial systems.

It is of course in the latter cases that change support is required, and therefore, a
compulsory requirement of the change support is related to its scalability.

This section proposes four types of changes:

• Change type n°1: minor specification and/or design change;

• Change type n°2: risk treatment;

18 This industrial typology of change is presented in a tool-agnostic manner. For an illustration based on the D4.4b prototype,
please refer to §3.

Integrability of design modelling solution | version 1.0 |
page 19 / 66

• Change type n°3: publication of qualification resu lts;

• Change type n°4: change of configuration.

2.2.2.2 Change type n°1: minor specification and/or design
change

The threat, vulnerability and risk assessment models encompass a number of concepts
that make direct reference to mainstream engineering concepts, in particular:

• the primary asset concept, which makes reference to anything that is important19 to
the end-user; a typical example is an operational or business process;

• the supporting asset concept, which makes reference to anything that supports
primary assets; a typical example is a data store;

• the security requirement concept, which makes reference to a security requirement
included in the baseline;

• the security solution concept, which makes reference to an element already
designed, implemented and qualified in the system / software under study.

Any change in the mainstream engineering objects that are, or should, be referenced
by threat, vulnerability and risk assessment objects obviously have an impact on the
assessment. Thus, the 1st type of change selected in this typology is represented by
minor specification and/or design changes (cf. Figure 2). These changes should be
handled as transparently as possible for the security expert. Please refer to §3.1.2 to
see how this type of change was handled in the D4.4b prototype.

2.2.2.3 Change type n°2: risk treatment

The main output of threat, vulnerability and risk assessment is represented by security
objectives. A security objective is an expression of the decision to treat a risk according
to prescribed methods20, i.e. a risk treatment plan. The security specification activity (cf.
§2.2.1.2.2) transforms these security objectives into security requirements, which are
then included into the baseline. This is the 1st step to effective risk treatment.

For the threat, vulnerability and risk assessment activity, this change is rather easy to
cope with, because it is somehow self-triggered21. It mainly consists in being able to
distinguish:

• the initial risk level, in terms of likelihood and consequences,

• the residual risk level, assuming that the security objective will be complied with; if
the security objectives are not complied with, then the residual risk levels must be
revised.

2.2.2.4 Change type n°3: publication of qualificati on results

As explained in §2.2.2.3, the specification of security objectives subsumes a positive
impact on the risk levels, from unacceptable levels to acceptable levels. The likelihood

19 I.e. has value, and therefore needs protection.

20 We distinguish in particular risk reduction, risk transfer, risk avoidance and the risk retention.

21 The only exception could be that a security objective is not transformed into a security requirement.

Integrability of design modelling solution | version 1.0 |
page 20 / 66

assumptions22 are checked during the security qualification / certification activity (cf.
§2.2.1.6). Each likelihood assumption may be:

• confirmed; in that case, the related risk level is confirmed at its acceptable residual
level, and the risk should visually23 disappear;

• or infirmed; here, the change is subtle, as it does not concern the system (or
software) itself, but the expectations24 that we have from it, i.e. the residual risk
level is proved wrong; therefore the change must be handled by a capability of
recording the new qualified threat (or risk) likelihood, without loosing the history if
the initial likelihood assessment; new or alternate security controls will need to be
put in place.

2.2.2.5 Change type n°4: change of configuration

A system configuration is a specific definition of the elements that define and/or
prescribe what a system is composed of at a given time. Configuration control is the
process of regulating major and long-term planned changes to hardware, firmware,
software and documentation throughout the development and operational life of a
system.

As stated in §2.2.1.2.1, when a threat, vulnerability and risk assessment is started,
multiple deployment configurations might already be planned. Quite obviously, the
threat, vulnerability and risk assessment must be able to deal with these different
configurations, either by proceeding with the configurations in turns, or by running the
assessments in parallel.

The basic capability to deal with these major and long-term planned changes is to be
able to deal with the presence or absence of some configuration items (e.g. primary
assets, supporting assets, threats, etc.), within a given configuration.

More subtly, the threat, vulnerability and risk assessment must also be able to deal
with the changes of the values of some attributes of some configuration items that are
present in multiple configurations.

Example: Let us suppose that a primary asset (e.g. a service), its supporting asset
(e.g. a computer) and some threat scenario (e.g. theft) on the supporting asset are
present in two configurations. Let us also suppose that the environmental conditions
are different between configuration 1 (e.g. the supporting asset is in the factory) and 2
(e.g. the supporting asset is on site), and that these differences have an impact on the
likelihood of the threat (e.g. theft is likely in the factory, negligible on site because of
the highly secured premises). Here, the threat belongs to both configurations, but the
threat likelihood attribute has a different value for each configuration. This in turn will
impact the risk level, so the associated risk will also have different attribute values for
the different configurations. Finally, if we suppose that the impact on the risk is
significant, then the risk may be acceptable in one configuration, and unacceptable in
the other. This is turn will trigger different values for the security objectives and security
requirements associated with the risk within the different configurations.

22 The qualification applies only to the likelihood, not to the consequences (i.e. severity).

23 The history of risk treatment must be recorded, but means must be given to filter out acceptable residual risk in order to allow
for the attention of the security expert to be focused on the remaining unacceptable risks, until all risks have become acceptable.

24 On Figure 2, this is shown by an arrow stemming from and pointing to the risk assessment activities.

Integrability of design modelling solution | version 1.0 |
page 21 / 66

As can be seen from the trivial example above, the management of the major and long-
term planned changes (i.e. configurations) of a system can quickly become highly
complex when the system is large and when there are many (e.g. 5 or more) foreseen
configurations.

Figure 2: An industrial typology of change

2.2.3 An industrial feedback on an academic proposa l
for change representation at the design level

In the context of the project, TUD provided with UMLchange25 a means of representing
change in UML models, typically produced at design level. UMLchange is a UML
profile dedicated to the explicit representation of changes in a UML model. It evolved
from the UMLseCh profile that was divided into its security-related component UMLsec
and its change-related component UMLchange with the move to UML 2.

Consider a UML model subject to changes. UMLchange works by representing all the
possible states of the model in a single model. That is, all the model elements present
in one of the states are part of the model. Then, UMLchange stereotypes are applied to
these elements to denote changes and clarify which element belongs to which state.

25 The assessment of UMLchange is performed only at conceptual level, in chapter 2, because TUD did not provide a prototype
implementing UMLchange until January 2012. Chapter 3 below is dedicated to prototype assessments.

C
o

n
fi

g
u

ra
ti

o
n

 m
a

n
a

g
e

m
e

n
t

C
o

v
e

ra
g

e

u
p

d
a

te
s

In
te

g
ra

ti
o

n
 o

f
se

c
u

ri
ty

re
q

u
ir

e
m

e
n

ts
 &

 s
o

lu
ti

o
n

s

In
te

g
ra

te
d

m
o

d
e

ls

Initial requirements

(of which security requirements)

M
a

in
st

re
a

m
 s

y
st

e
m

/s
o

ft
w

a
re

e
n

g
in

e
e

ri
n

g
 t

ri
g

g
e

re
d

 c
h

a
n

ge
s

R
is

k
 a

ss
e

ss
m

e
n

t
&

se
cu

ri
ty

 e
n

g
in

e
e

ri
n

g

tr
ig

g
e

re
d

 c
h

a
n

ge
s

Risk treatment

plan

Minor development

changes

Security tests &

accreditation

feedback

Deployment version n°1

New set of requirements

Deployment

version n°2

Etc.

Change managed through…

t

t

Branch…

R
is

k
 a

ss
e

ss
m

e
n

t
ch

a
n

ge

m
a

n
a

g
e

m
e

n
t

st
ra

te
g

ie
s

Risk

treatment

Integrability of design modelling solution | version 1.0 |
page 22 / 66

UMLchange contains stereotypes for representing atomic changes, which are the
addition of new model elements («add»), the deletion of model elements («delete»),
and the substitution of model elements with others («subst»). Complex changes are
described by aggregating changes («change set»). In addition, constraints can be
applied to changes (through the {constraint} tag) to specify under which condition is the
change to be applied. In particular it is possible to express that a change shall only be
applied when another specific change has also been applied, or has not been applied,
or under any Boolean combination of such conditions.

This framework is obviously an extremely generic way of expressing change in a UML
model, as it is intended to be. The various tags associated with the stereotypes are of
type String, which emphasizes the flexibility of the notation as anything might be
encoded into the notation. In particular, {constraint} is of type String. The syntax and
semantics of the language used to express them are not fixed. It is assumed that those
should be provided by the analysis tools manipulating UMLchange stereotypes.

From the industrial point of view, UMLchange shall be seen as a building block for
representing change in general, not as an operational solution. Indeed, the constraints
of an industrial environment in this respect are many:

• A representation of change is meaningless if it is not supported by analyses. This,
in turn, requires semantics to be attached to the change objects, and therefore to
restrict the expressivity of the language. For example the {constraint} tag might be
used to refer to other changes in the same model, or to changes in other models, or
to external object representing, for instance, the decision of a board to allow a
certain change or not.

• Changes must be traceable and justified; in particular it may be necessary to
provide a link to the requirement(s) that cannot be met unless the change is
implemented, or a link to the analysis (for example, a risk analysis) which
determined the necessity for the change.

• UMLchange explicitly represents change as a first-order citizen in the model, which
puts on the same level two distinct activities: the manipulation of model elements
and the management of change. Industrial processes impose a strict separation of
these activities. The consequence is that the modelling tool must take this point into
account by providing a restricted access to the underlying modelling facilities
supported by the model.

2.3 A focus on the design phase security modelling
and change management using the UMLsec &
UMLchange languages

The UMLsec language is a UML profile consisting of a collection of stereotypes that
are meant to convey security-related information of the following kinds:

• Security characteristics of the physical and logical levels of the system. They can
be seen as assumptions (say, of the known security characteristics of a readily
available component) or specifications (guiding the choice of a component
matching these security requirements).

• High-level security policies expressing a constraint on the model.

Integrability of design modelling solution | version 1.0 |
page 23 / 66

The combined use of those stereotypes enables security analyses to be performed on
a model. Typically a stereotype expressing a security policy is applied on a container
(e.g. a UML package) and the associated constraint involves the security
characteristics expressed by the UMLsec stereotypes attached to the sub-elements.
We refer to each such constraint and its verification as an analysis. In this section, we
discuss the analyses that are most relevant to industrial use in general. The ATM use
case is used as a concrete example to illustrate the use of the selected analyses, but
our choice of analyses is based on industrial needs that go beyond the project’s use
case.

2.3.1 ATM use case: TCC physical arrival

In the following sections we identify several UMLsec analyses that are relevant in an
industrial setting. We give a more concrete flavour by illustrating each check with an
example from the ATM use case, namely the process followed by a TCC when
physically arriving in a control room.

We developed an activity diagram26 (see Figure 3) describing the process of the arrival
of a TCC in a control room. It was developed with Papyrus UML. Notes above the
diagram indicate actors and activities are aligned with the note of their actor. Next, we
performed security analyses with UMLsec.

Upon arrival, the TCC goes through a security check involving the identification and the
deposit of unauthorized items, before being allowed to proceed to the control room.
Several security properties of the process may be expressed in terms of UMLsec
analyses.

• Identification: ensure that the TCC is properly identified.

• Auditing: ensure that some specific actions in the process can be traced.

• We illustrate the use of selected UMLsec analyses by showing how they can help
verify that the process has those properties.

26 In D4.4b, we keep the discussion on a purely technical level, as our aim is to introduce UMLsec’s features that seem relevant.
An ATM business-oriented presentation of the same process can be found in D1.3, where the same UMLsec analyses are
mentioned and put in the context of the use case. The reader is encouraged to refer to that deliverable for more information.

Integrability of design modelling solution | version 1.0 |
page 24 / 66

Figure 3 - Activity diagram for the physical arrival of the tactical controller (TCC)

2.3.2 The fair exchange analysis

The fair exchange analysis applies to an activity diagram, typically the one given above
in Figure 3. It consists in verifying a certain liveliness property; its interest lies in its
generality.

The analysis is enabled by applying the «fair exchange» stereotype to a package
containing an activity diagram. This stereotype has associated tags {start} and {stop}
whose values are lists of actions from the activity. The associated constraint can be
stated as follows: every path in the activity diagram going through an action in {start}
must subsequently go through an action in {stop}. The name “fair exchange” refers to a
possible use of this analysis. For a transaction protocol to be considered secure, one
must have the assurance that any payment will be followed by either the delivery of the
purchased good or a refund.

Integrability of design modelling solution | version 1.0 |
page 25 / 66

Some of the aforementioned properties can be expressed as fair exchange problems.

• Identification: ensure that the bearer of an unauthorized badge is not allowed to
proceed. This constraint can be expressed by taking {start = Check badge
authorizations} and {stop = Open control room, Call security guard}.

• Auditing: ensure that the process enforces the traceability of identification checks.
This constraint can be expressed by taking {start = Check identification} and {stop =
Log entry/exit}.

• Auditing: ensure that the process enforces the traceability of item deposits. This
constraint can be expressed by taking {start = Deposit unauthorized items} and
{stop = Log deposit}.

Fair exchange is useful as a general purpose liveliness check. In model checking,
liveliness properties are those of the form “X will eventually happen”; together with
safety properties, of the form “X will never happen”, they form the basic building blocks
for expressing high-lever properties.

One important characteristic of the fair exchange analysis is that each instance of the
stereotype supports one analysis. If several fair exchange constraints must be verified
simultaneously by the same model (such as in the ATM example), then the modelling
tool must support attaching several instances of a stereotype to the same model
element. This restriction is important to bear in mind.

2.3.3 Provable

The provable analysis applies to an activity diagram as well. It can be used in a similar
way as fair exchange, but in the opposite direction; it requires that an action be
executed before another.

The analysis is enabled by applying the «provable» stereotype to a package containing
an activity diagram. This stereotype has associated tags {action} and {cert} whose
values are names of actions from the activity diagram. The associated constraint can
be stated as follows: every path in the activity diagram going through the action named
by {cert} must have previously gone through the action named by {action}. The name
“provable” refers to a possible use of this analysis. {cert} serves as a certificate (or
proof) that the action named by {action} was performed.

Some of the aforementioned properties can be expressed as provable problems.

• Unauthorised items: the TCC may only go to the control room after having been
checked for metal. This constraint can be expressed by taking {action = Check for
metal} and {cert = Go to control room}.

• Identification: the control room may only be opened after proper authorisations
have been checked. This constraint can be expressed by taking {action = Check
badge authorizations} and {cert = Open control room}.

• Auditing integrity: logs are only written to when needed. This constraint can be
expressed by taking {action = Check staff identification} and {cert = Log entry/exit},
or {action = Collect and register deposited items} and {cert = Log deposit}.

• Identification: the TCC must be acknowledged by their colleagues before being
allowed to work. This constraint can be expressed by taking {action = Acknowledge
colleagues} and {cert = TCC/PLC ready for work}.

Integrability of design modelling solution | version 1.0 |
page 26 / 66

Provable is a versatile check extremely useful to a range of security problems. This is
clearly understandable; the solution to many security problems consist in requiring that
a security check be passed before a sensible action is performed.

The provable analysis suffers from the same limitation as the one detailed for fair
exchange.

2.3.4 Role-based access control

The classic role-based access control paradigm is implemented in UMLsec with the
help of a dedicated stereotype, «rbac». This stereotype is applied to a package
containing an activity diagram with actors and swim-lanes and allows controlling which
actors are allowed to perform which actions in the diagram.

There are three associated tags, {protected}, {role}, and {right}. {protected} is a list of
actions that need protection, {role} is a string describing a list of pairs (actor, role)
assigning roles to actors, and {right} is a string describing a list of pairs (role, action)
specifying which roles are allowed to perform which actions.

The associated constraint is the following: each action in the swim-lane of an actor
must be allowed for some role assigned to the actor.

The process for the ATM use case presented above involves four actors and could
benefit from the use of RBAC to protect some of the most sensible activities. For
example, the following properties could be enforced by UMLsec:

• Auditing integrity: logs should only be performed by accredited personnel. This can
be enforced with {Log entry/exit, Log deposit} ⊆ {protected},
{(Log entry/exit, Logger), (Log deposit, Logger)} ⊆ {right}, and
{(Security guard, Logger)} ⊆ {role}.

• Identification: the TCC must be allowed to work by their supervisor. This can be
enforced with {Check shift schedule} ⊆ {protected},
{(Check shift schedule, Shift manager)} ⊆ {right}, and
{(Shift manager, Operational supervisor)} ⊆ {role}.

In contrast to fair exchange and provable, the rbac analysis can support all the above
constraints with a single stereotype application.

2.3.5 Concluding remarks

UMLsec supports a catalogue of security analyses. We presented above those that
seemed the most appropriate to a generic treatment of security in industrial
applications, and illustrated it through the ATM use case.

As far as the ATM use case is concerned, an important point to consider is that the
various properties are not supported out-of-the box, but must be encoded in terms of
the various available UMLsec analyses. The mapping is not always obvious, but that is
to be expected when using generic analyses (e.g. fair exchange, provable…) as
opposed to analyses tailored to a specific problem (e.g. identification, logging, etc.)

In particular, the fact that a high-level property has to be encoded into a conjunction of
lower-level constraints, thus requiring the application of several instances of a
stereotype to the same model element, should be seen as a risk considering the
limitations of some of the current modelling tools in that respect.

Integrability of design modelling solution | version 1.0 |
page 27 / 66

2.4 Instantiation using the “Integrated
SecureChange Process”

A collaboration was established between THA and UIB to implement parts of the
security engineering process, as described in §2.2, using the results of work-package
2. In this collaboration, THA described the change management process between its
risk assessment tool (called Rinforzando v2.5) and its mainstream system engineering
tool (called SMS v3.1) whilst UIB created the corresponding state machines that both
describe the model states in each tool, and ensure the change impact propagation
between the tools (cf. §2.4.2). This work was performed through a number of
teleconferences and email exchanges. It required a significant amount of iterations,
which were beneficial for both parties in terms of clarification and formalisation of the
processes and mechanisms underlying the models (cf. §2.4.1).

2.4.1 Short introduction to MoVE modelling

In general, a process is mapped to MoVE27 by writing the appropriate state machines
using the W3C State Chart XML (SCXML) standard.

To handle to interactions between processes, the standard state charts are insufficient.
UIB has extended the state charts with actions (cf. §2.4.1.2) and events (cf. §2.4.1.2).

2.4.1.1 Actions

An “action” allows a state machine to trigger a transition in one or more different state
machines. Actions are defined on the entry28 of a state, using the onEntry tag of the
SCXML standard. Actions are optional. Example:

<state id="registered">

<onentry>

<ocl:adaptation actions="Action[query=let result: Course = self.for_subject

in result event=checkRegistrations]" />

</onentry>

<transition event="schedule" target="scheduled"/>

</state>

In the above example, the SCXML engine triggers its action listener every time the
state registered is entered. If no action is defined, nothing is triggered.

An action tries to trigger a transition from the current state of an object to the desired
state of the object. It does not switch to the desired state if the switch is not supported
by an existing transition, whose transition conditions are fulfilled. In case no transition
exists, an exception is raised.

On a modelling point of view, UIB uses UML representations of the state machines to
represent the SCXML state charts. This approach lacks accuracy. Alternatives are
being studied.

27 The MoVE tool stands for Model Versioning and Evolution and is a tailor-made model repository to support Living Models and
change-driven processes. For details, please refer to D2.3.

28 An action could also be defined upon exit of a state (onExit tag) but the need for such a behaviour has not yet occurred.

Integrability of design modelling solution | version 1.0 |
page 28 / 66

2.4.1.2 Events

For some processes even the action-extended state machines are not expressive
enough to cover all rules.

To overcome problems with the limited expressiveness of state machines UIB has
implemented an event based mechanism that “cooperates” with the state machines.
The basic idea of the events is that MoVE analyses changes in the model and
generates messages such as “the name attribute of element with ID 1234 changed
from Risk-1 to R-1”. MoVE plugins can register for certain type of events and certain
models and respectively receive all corresponding messages.

Figure 4: Modelling interactions between processes using MoVE

In the figure the red arrows show events that are sent via MoVE to plugins listing to the
corresponding events. They point to the initial notes simply to denote the semantics of
the event.

2.4.2 Instantiation

As described in §2.1, the process modelling work performed in WP2 allows for the
creation of two versions of the state-machines:

• one which supports a fine-grained process based on the state of single model
elements;

• one which supports a coarse-grained process which is based on the state of the
entire SMS and Rinforzando models.

In our case of the coarse-grained model does not allow for the capture of the
interactions as developed by Thales between SMS and Rinforzando. This section
therefore presents a set of fine-grained state machines (cf. Figure 5) that captures
some of the interactions between SMS and Rinforzando as detailed in §2.2.1, §2.2.2
and §3.1. To capture correctly the interactions, it was needed to model the state-
machines of three model elements:

• mainstream system engineering model elements (shown on the left side in Figure
5);

Integrability of design modelling solution | version 1.0 |
page 29 / 66

• the proxies of the mainstream system engineering model elements within the risk
assessment tool (shown in the centre, in Figure 5);

• the assets identified and created in the risk assessment study (shown on the right
side in Figure 5).

To better understand the logic of the state machines, the reader is also invited to read
about the software architecture, in §4.3.

Integrability of design modelling solution | version 1.0 | page 30 / 66

Figure 5: Fine-grained process state machine

SMS Element Rinforzando SMS proxy Rinforzando Asset

Created

Unselected

Selected as

asset

Selected by

Rinforzando

Dropped by

Rinforzando

CreateChange name

Deleted

SMS element visible in Rinforzando

Create

Unselected

Selected as

asset

Selected by

Rinforzando

Dropped by

Rinforzando

Asset correlated to SMS element

Create

Names

synchronised

Names

desynchronised

Local change

name

Restore

name

Action: Create

Deleted

Deleted

Distant change

name (1)

(1) Warning

Asset

uncorrelated

De-correlate

C
o

rr
e

la
te

Actions: Create &

Correlate

Delete

Action: Dropped by Rinforzando

Delete

DeleteDelete

Action: Delete

Action: De-correlate

Action: Selected by Rinforzando

Integrability of design modelling solution | version 1.0 |
page 31 / 66

It is interesting to note that both sub-states (i.e. “Unselected” and “Selected as asset”)
of the “Created” state of an SMS element have inbound actions, and no outbound
actions. This is because these states do not exist as absolute states of SMS elements;
these states exist only in relation to Rinforzando, i.e. a tool external to SMS. In other
words, someone who would have modelled the SMS element state-machines, taking
SMS as a standalone tool, would never have modelled those states. The SMS element
state-machine is therefore completely specific to the integration with Rinforzando.

To close the description, two short explanations about:

• The proxy state machine, which triggers the creation of a Rinforzando asset
element. This is because a selection window of Rinforzando shows the list of
existing SMS elements. Each element in that list of the Rinforzando tool is an SMS
proxy. When the user selects an element in the list, a Rinforzando asset is created
on the diagram.

• The “Asset uncorrelated” state, which is reached when the correlated SMS element
sends an action that it was deleted and which sends back an action message to the
already deleted element that the correlated element is now uncorrelated. In fact, no
message is to be sent back if the origin of the state is triggered by a deletion.
Indeed, the Rinforzando asset can also be decorrelated manually within
Rinforzando. This action is not supported by the tool HMI, but it can be done using
the Properties window of Eclipse. This was semantically expressed by the label
“Dropped by Rinforzando”.

Integrability of design modelling solution | version 1.0 |
page 32 / 66

3 Illustration on the prototypes

This chapter focuses on a small part of the overall security engineering process as
described in §2.2. Figure 6 shows the scope of the ATM running example, as
extensively described in D1.3, where the tools used for each step are clearly specified.
This chapter enters into the practical and technical details of some of the activities
performed in the D1.3 running example.

Figure 6: Scope of the ATM running example for the D4.4b prototype illustration

In section §3.1, the focus is on the change management between the risk assessment
performed using Rinforzando, and the system / software specification using the Thales
SOA Modelling Suite (SMS). Section §3.2 examines the next phase, i.e. change
management during security design, using CARiSMA.

3.1 Change management between security risk
assessment and system / software specification
using the Thales prototype

According to the ATM risk assessment performed by SINTEF with CORAS29, the
“Unauthorised execution of APP services” stands out as the most severe unwanted
incident (i.e. feared event), with respect to the “APP service provisioning” goal (i.e.
primary asset), with an overall severity rated “High”, and the respective severities on
safety, business and reputation being high, medium and high. There are two threat
scenarios leading to this unwanted incident: “External unauthorized actor gets access
to APP control room” and “External unauthorized actor operates CWP in APP control
room”. The likelihood of those scenarios has been rated respectively “possible” and
“rare”. At this phase of the development lifecycle, the system is not yet designed, so

29 Cf. D1.3 for more details.

System / software
specification
(Thales SMS)

System / software
design

(Thales SMS
+ Papyrus)

Customer need
analysis

(SI*)

Security
specification

(requirements)

Security design
(CARiSMA)

Security
needs elicitation
(brainstorming)

……

Performed

twice: once

before the

change & once

for the change

the likelihood values are to be understood as security requirements
acceptable, given the severity of the unwanted incidents, i.e.:

• The likelihood of an external unauthorized actor getting access to APP control room
shall be at most “possibl

• The likelihood of external unauthorized actor operating the CWP in APP control
room shall be at most “rare”.

These 2 requirements represent the main input for
performed herein.

3.1.1 Step 1: System specification using SMS

The two aforementioned security requirements were considered in designing a staff
physical arrival process using the Thales SOA Modelling Suite (

Figure 7: Staff physical arrival (collaboration)

Integrability of design modelling solution

values are to be understood as security requirements to make the risks
erity of the unwanted incidents, i.e.:

The likelihood of an external unauthorized actor getting access to APP control room
be at most “possible”.

The likelihood of external unauthorized actor operating the CWP in APP control
be at most “rare”.

These 2 requirements represent the main input for the system specification phase

Step 1: System specification using SMS

aforementioned security requirements were considered in designing a staff
using the Thales SOA Modelling Suite (SMS).

(collaboration)

Integrability of design modelling solution | version 1.0 |
page 33 / 66

to make the risks

The likelihood of an external unauthorized actor getting access to APP control room

The likelihood of external unauthorized actor operating the CWP in APP control

specification phase

Step 1: System specification using SMS

aforementioned security requirements were considered in designing a staff

Integrability of design modelling solution | version 1.0 |
page 34 / 66

Figure 7 shows a collaboration, according to the standard Business Process Modelling
Notation (BPMN) 2.0 notation. It shows how tactical or planner controllers must go
through a number of identity, authenticity and access control checks before being able
to start their work in the APP control room. The process also includes a number of
logging activities in order to support auditing.

Once the design activity is started, the security risk assessment activity can begin. The
latter is described in §3.1.2.

3.1.2 Step 2: Security risk assessment using
Rinforzando

The first activity30 in risk assessment is to identify primary assets (called “essential
elements” in the tool) within the SMS models. This is done using the “Essential
Element(s)” tool in the “Import” palette (cf. Figure 42 on page 62). The complete list of
objects that can be selected is shown in a window (cf. Figure 8).

This window provides the security experts with a fine grained insight on the ongoing
design work.

As can be seen in black writing on Figure 8, comprehensive artefacts such as the
“electronic hand-over service” interface, the “staff physical arrival” collaboration or the
“physical entry/exit control” process can be selected, as well as fine-grained artefacts,
such as the “send” operation by the “hand-over” service or a “deposit registry” data
store within the “staff physical arrival” collaboration.

The scope of artefact types that can be selected as primary assets has been
configured offline in order to give a comprehensive choice without overwhelming the
security experts with irrelevant artefacts, such as messages or pools.

Irrelevant artefacts are shown in grey so as to picture the overall structure of the
system design. Indeed, there may be tens of operations called “send” within the
complete design, but only one of them, e.g. the “send” operation of the “hand-over”
service, might need to be selected as a primary asset. The grey elements allow for an
understanding of the overall architecture and provide useful support in selecting the
right modelling artefacts.

30 A prerequisite to perform a risk assessment is that a new study is created and linked to the SMS models. Full details on this
operation are given in §4.2.1.

Integrability of design modelling solution | version 1.0 |
page 35 / 66

Figure 8: Importing essential elements from SMS (1/2)

Once the “staff physical arrival” collaboration is selected in the window, the primary
asset associated with that collaboration appears, under the same name, within the risk
assessment study, as shown in Figure 9. The link of the primary asset artefact to the
collaboration artefact in the SMS study is visible in the “Properties” window.

Integrability of design modelling solution | version 1.0 |
page 36 / 66

Figure 9: Creation of a primary asset within the risk assessment study

The selection and creation of this primary asset has multiple side-effects:

• Within SMS, it is now possible to see that the “staff physical arrival” collaboration
has been selected as a primary asset in the risk assessment study; to this end, a
“layers” menu was added in SMS during the installation of the risk assessment
viewpoint. It allows for the selection of the desired annotations, as picture in Figure
10; once the desired layer has been selected, the artefact is discretely annotated,
here in the upper left corner of the collaboration box. If these annotations are
considered cumbersome, it is of course possible to hide all annotations by
unselecting all layers.

Figure 10: Adding risk assessment annotations in the mainstream system engineering design

• Within the risk assessment study, a new call to the “Essential Element(s)” tool in
the “Import” palette (cf. Figure 42 on page 62) will show a list of objects that can be
selected as primary asset within the SMS study, in which the already selected item
appears in blue. In our case here, the staff physical arrival” collaboration is now
written in blue, cf. Figure 11.

Integrability of design modelling solution | version 1.0 |
page 37 / 66

Figure 11: Importing essential elements from SMS (2/2)

The same process can be repeated for the supporting assets, as shown in Figure 12.
The colour coding may seem trivial, but it is of high utility. Under the hypothesis that
the mainstream system engineering activity is ongoing in parallel to the risk
assessment, it is highly likely that new elements will be created in SMS after the initial
analysis performed by the security expert. In that case, a quick scan through the
elements in the window will show in black all the elements which have not yet been
selected, thus saving a tedious comparison between the two models.

Figure 12: Importing targets from SMS

Change management support to the risk assessment is also provided in case existing
and already selected elements are changed in SMS. Let is for example focus on the
“security guard” that has been selected as a supporting asset to the “staff physical
arrival” collaboration, as pictured in Figure 12. To stress the fact that the security guard

Integrability of design modelling solution | version 1.0 |
page 38 / 66

position will not be sub-contracted, the design chooses to rename the “Security Guard”
lane into “ANSP31 In-House Security Guard”, as shown in Figure 13.

Figure 13: Renaming the “Security Guard” lane into “ANSP In-House Security Guard”

As soon as the BPMN collaboration diagram is saved, the change is automatically and
transparently reflected in the risk assessment study, as shown in Figure 14.

Figure 14: Automatic and transparent renaming from SMS to Rinforzando

It is to be noted that the change is not automatically and transparently reflected in the
risk assessment study if the name was originally changed in the risk assessment study.
Let us assume that the question about the sub-contracting of the security guard
position was first discussed by the security experts with the customer, and it was
confirmed that the security guard would be a member of the ANSP staff. To raise the
ambiguity, the name of the supporting asset was changed in the risk assessment
study, as shown in Figure 15. This change has no effect on the SMS models.

31 Air Navigation Service Provider.

Integrability of design modelling solution | version 1.0 |
page 39 / 66

Figure 15: Changing the name of a supporting asset in the risk assessment study

If the designers now change the name, as shown in Figure 13, there will be no change
in the risk assessment study, as this would mean the loss of some work performed by
the security expert. However, this change should not go unnoticed by the security
expert. This is implemented through a warning which is raised during a diagram
validation, as shown in Figure 16.

Figure 16: Diagram validation and warning (1/3)

A similar change management support is provided by Rinforzando when an existing
and already selected element is deleted in SMS. Lets us suppose here that for cost
reasons, the logging function is suppressed from the “identity and authorisation control
system” during a design review, as pictured in Figure 17 and Figure 18.

Integrability of design modelling solution | version 1.0 |
page 40 / 66

Figure 17: Identity and authorisation control system, before cost reduction, and its interactions with the
entrance security gate (with risk assessment annotations)

During this cost reduction operation, the “entry/exit database” is also deleted from the
SMS model, not withstanding the fact that it had been identified as a supporting asset
during the risk assessment (cf. Figure 11). It is important to note that the fact that it had
been selected as a supporting asset was also visible from the SMS side, through the
target annotation on the database (cf. Figure 17).

Figure 18: Identity and authorisation control system, after cost reduction (without risk assessment
annotations)

Again, there will be no automatic or transparent change in the risk assessment study
following this deletion, as this would mean the loss of some work performed by the
security expert and because the impact on the risk assessment is extremely complex,
in terms of threat likelihood, risk level and/or compromised security goals. The change
notification is once again implemented through a warning which is raised during a
diagram validation, as shown in the “Problems” window (cf. Figure 19) and graphically
directly on the related item (cf. Figure 20). The security expert will then be in a position
to process the change manually.

Integrability of design modelling solution | version 1.0 |
page 41 / 66

Figure 19: Diagram validation and warning (2/3)

Figure 20: Diagram validation and warning (3/3)

3.2 Evaluation of change management between
early validation of security properties and
system / software design using UML and
CARiSMA

CARiSMA is a tool developed by TUD during the second and third years of
SecureChange supporting analyses for the UMLsec and UMLchange UML 2 profiles.
Those profiles are dedicated to, respectively, security and change modelling. UMLsec’s
stereotypes and tags annotate the elements of a UML 2 model with security-related
information that is then used by CARiSMA to carry out security analyses. UMLchange’s
stereotypes and tags represent changes (additions, deletions and substitutions) and
can be applied to a UML 2 model to denote the evolution of a model. Some of
CARiSMA’s security analyses have evolution-aware variants supporting UMLchange
annotations that are used to verify that the described change does not invalidate the
security property.

CARiSMA is the successor to the legacy UMLsec tool, which performed analyses for
the legacy UML 1.x UMLsec profile, but had no support for evolution.

This section presents the results of Thales’ evaluation of the tool. CARiSMA consists of
a set of plug-ins for the Eclipse platform distributed as an update site. Once installed,
the tool integrates into Eclipse’s UML2 framework by:

• making the UMLsec and UMLchange profiles available so that they can be applied
to UML 2 models;

• allowing analyses to be performed on profiled UML2 models.

We used Papyrus UML as our main modelling tool. Papyrus unfortunately uses a
specific mechanism to register profiles that CARiSMA does not make use of,
preventing a profile to be applied directly from Papyrus. This is easily worked around,

Integrability of design modelling solution | version 1.0 |
page 42 / 66

however: the user can simply apply the profile(s) in Eclipse’s basic UML editor, and
then stereotypes can be added to individual model elements directly from Papyrus.

CARiSMA’s user interface is simple and intuitive, and includes a help section
integrated into Eclipse’s help system. It is quite easy for a user to set up and run an
analysis. A dedicated view displays the synthetic results of analyses, and more details
can be obtained by generating text reports.

We identified several areas of possible improvement.

1. CARiSMA’s implementation of the checks is not specified; the best documentation
source is the UMLsec book, which details the semantics of UMLsec for UML 1.x.
The following information would be useful:

a. the exact impact on each UMLsec constraints caused by the move to UML2;

b. any deviation from these updated semantics in the implementation in
CARiSMA.

2. In terms of user interface, the integration with Eclipse could be pushed further, in
particular with the EMF Validation framework; one of the benefits would be the use
of the standard Problems view for reporting analysis results instead of a specific
one.

3. The implementation of all the checks we tested seemed to be sequential, even
when independent sub-checks could be treated in parallel (e.g. separate path in
fair exchange). As a matter of fact, the checks seem to be run in Eclipse’s UI
thread, with the consequence that the UI is completely frozen during long
computations and no progress feedback is given. This is incompatible with any
non-trivial check.

4. There is no alternative to CARiSMA’s point-and-click interface; in particular no
public API is provided to call analyses programmatically. This is a major issue if
the tool is to be integrated in a larger industrial environment.

3.2.1.1 Structural checks

CARiSMA supports UMLsec’s “secure dependency” and “secure links” analyses.
Those are static analyses in the sense that their associated constraint expresses a
structural constraint on the model, such as those that are typically implemented in OCL
or Java.

Those analyses have a limited use because they are highly specific. We do not provide
examples for their use since they were not relevant to our use cases. However, many
similar constraints usually complement meta-models and are part of any industrial
speciality engineering. Our main remark is that we could not find any reason to use
CARiSMA for such checks, when Eclipse makes it easy to add equivalent OCL or Java
constraints with the added benefit of a full integration with the EMF Validation
framework, including the Problems view, tooltips, and quick fixes.

3.2.1.2 Benchmarks for the fair exchange check

At the time of this writing, the only general-purpose dynamic check supported by
CARiSMA is fair exchange. As described in section 2.3.1, the fair exchange check can
express generic liveliness properties. No evolution aware variant is available; it would

Integrability of design modelling solution | version 1.0 |
page 43 / 66

have been useful to evaluate the benefit of an explicit representation of change for a
computationally extensive check such as fair exchange.

Liveliness is one of the key properties analysed by model checkers. A model checker
explores a description of a system (usually in the form of a graph structure of states
and transitions) exhaustively and checks that all possible executions of the system
verify a given property. The major issue model checkers face is the combinatorial
explosion of the number of states / execution paths to consider. A number of
techniques have been developed in the last 20 years to alleviate this problem.

We ran three distinct benchmarks to estimate how CARiSMA’s implementation of fair
exchange copes with this combinatorial explosion. The hardware used for the
benchmark was an Intel Core 2 Duo T9600 CPU clocked at 2.80 GHz, and 3.48 GB of
RAM.

Long parallel paths

We developed an activity diagram from an industrial process in which two actors
perform a few actions independently before synchronising. In doing so, we ran into
performance issues with CARiSMA. We isolated the part of the diagram responsible for
these and obtained the simpler diagram illustrated in Figure 21.

Figure 21 - Activity diagram for the long parallel paths benchmark

The path goes from the initial node to an initial action Start marking the first
synchronisation point of the two actors, to two parallel paths of " actions each
representing the actions of each actor on its own path, to a final action Stop marking
the second synchronisation point of the two actors, to the final node. We ran the check
with {start = Start} and {stop = Stop} for various values of " and measured the time the
check took to complete; the results are given in Table 1.

Value of # Value of $%#
& Time Paths / s

6 924 2 s 462
7 3432 24 s 143
8 12870 6 min 17 s 34
9 48620 1 h 40 min 30 s 8

Table 1 - Timing results for the long parallel paths benchmark

These results show that the execution time of CARiSMA’s implementation of fair
exchange grows extremely quickly with the length of the paths. This could be caused
by the interleaving semantics of activity diagrams in UMLsec. UMLsec considers
sequential execution paths, and all the possible interleavings of parallel paths must be
considered in the verification. In our example, if " = 2, the 6 possible interleavings are:

Integrability of design modelling solution | version 1.0 |
page 44 / 66

A1, A2, B1, B2

A1, B1, A2, B2

A1, B1, B2, A2

B1, A1, A2, B2

B1, A1, B2, A2

B1, B2, A1, A2

In other words, an interleaving of the two parallel paths is essentially a permutation of
the 2" actions such that the order of the actions in each parallel path is respected. The
number of interleavings (and, consequently, of paths to check) is therefore the binomial
coefficient $)*

* &. We conjecture this to be the cause for the high running time. However
the running time grows significantly quicker than $)*

* &; the increasing length of the
paths seems unlikely to account for that effect, which we suspect might be attributed to
memory constraints (e.g. swapping).

In any case, this benchmark shows that the check can only accommodate small
numbers of actions in parallel paths. It does not support the verification of processes
involving independent paths with a large number (i.e. around 10) of actions at any
point. This is unfortunately not uncommon in an industrial environment.

Parallelisation

Following the issues raised in the previous benchmark, we developed another
benchmark to evaluate the check’s sensitivity to parallelism. We considered the family
of activity diagrams illustrated in Figure 22.

Figure 22 - Activity diagrams for the parallelisation benchmark

A diagram consists of a path from an initial node to an initial action Start, to a group of
" actions executed in parallel, to a final action Stop, to a final node. We ran the fair
exchange check with {start = Start} and {stop = Stop} for several values of " and
measured the time the check took to complete. Table 2 presents the results.

Value of # Value of #! Time Paths / s

5 120 1 s -
6 720 2 s 360
7 5040 34 s 148
8 40320 39 min 17

Table 2 - Timing results for the parallelisation benchmark

Integrability of design modelling solution | version 1.0 |
page 45 / 66

The timing results show once again that the running time of the check grows extremely
quickly, confirming our hypothesis as to the sensitivity of the check to parallel paths. In
our example, an interleaving of the " parallel paths is essentially a permutation of the "
actions. There are therefore "! paths to check. Again, the running time grows much
quicker than the number of paths.

The check does not support the verification of processes involving a large number (i.e.
around 10) of actors performing concurrent actions at any point. Although one does not
always handle such cases, this is an important limitation to be aware of in an industrial
environment.

More generally, the tool can clearly only accommodate a small amount of parallelism,
being limited to handling a few short parallel paths.

Independent choices

In a third benchmark, we explored another source of combinatorial explosion in the
number of paths unrelated to parallelism. This time we used independent decision /
merge patterns chained sequentially as illustrated in Figure 23.

Figure 23 - Activity diagrams for the independent choices benchmark

A diagram consists of a path from an initial node to an initial action Start, to a chain of "
patterns, each of which consisting of two disjunctive branches containing each one
action, to a final action Stop, to a final node. We ran the fair exchange check with {start
= Start} and {stop = Stop} for several values of " and measured the time the check took
to complete. Table 3 presents the results.

Value of # Value of %# Time Paths / s

10 1024 3 s 341
11 2048 10 s 205
12 4096 36 s 114
13 8192 3 min 40 s 37
14 16384 11 min 25
15 32768 51 min 11

Table 3 - Timing results for the independent choices benchmark

The timing results show that the running time of the check grows quickly, certainly
quicker than the number of paths 2*, but seemingly roughly exponentially.

The check does not support the verification of processes involving a quite large
number (i.e. around 15) of independent choices. This is a limitation to be aware of, but
the typical models manipulated in an industrial environment at a high level of

Integrability of design modelling solution | version 1.0 |
page 46 / 66

description (process) do not contain that many choices. Besides, this limitation is more
likely to be expected from a verification tool than the limitation on parallelism.

Concluding remarks

Although the fair exchange analysis seems to be useful as a generic check, its
implementation in CARiSMA suffers from the classic state space explosion problem.
The benchmarks we provided demonstrated the problem, and such cases are not
uncommon in industrial models. For example in the ATM domain modelling the detailed
work of the ATCs in a control tower involves 5 or 6 parallel paths (one per controller)
with sequences of about 10 actions. The mere presence in an activity diagram of
patterns such as the ones exposed in the benchmarks causes extremely high running
times of the check, even if the fair exchange problem only involves parts of the diagram
in which the patterns do not occur.

This issue, combined with the fact that any long computation freezes the user interface
and requires the user to terminate the Eclipse instance losing any unsaved work,
makes it unsuitable for industrial use in its current state.

Evolution aware checks currently implemented are structural only. However, the real
benefit of an explicit representation of change, would be the support of computationally
intensive behavioural checks such as fair exchange.

3.2.1.3 SWOT analysis

The following SWOT analysis is written from the point of view of an industrial
organisation considering the adoption of CARiSMA.

Strengths

• The UMLsec language has received considerable attention over the years and is a
reference in UML-based security verification.

• UMLsec addresses a fragment of UML for which formal semantics are given.
Recent work on the language allowed it to be ported to UML 2.

• CARiSMA is integrated in the modern Eclipse EMF platform.

Weaknesses

• The formal semantics are defined in the UMLsec book but have not been explicitly
ported to UML 2. The relationship with other semantics (such as the fUML
standard) is not specified, but they are likely distinct.

• A few of the UMLsec checks have been ported and implemented in CARiSMA so
far, but the tool is currently immature. A documentation of deviations from the
semantics described in the book, if any, would be useful.

• The integration with Eclipse is partial. While Eclipse’s UML 2 framework is
supported, there is no integration with EMF Validation.

• There is no clear advantage in using CARiSMA’s structural checks over OCL-like
constraints supported by EMF Validation. CARiSMA’s only behavioural check, i.e.
fair exchange, suffers from performance limitations.

Opportunities

• UMLsec’s analyses are helpful in performing early security validation on a system
under development.

Integrability of design modelling solution | version 1.0 |
page 47 / 66

Threats

• While UML is a standard for modelling, the same is not true of UMLsec and
UMLchange.

• There is no clear public roadmap for the future development of UMLsec and
CARiSMA in terms of direction or amount of involved resources.

• There are no noticeable large scale industrial deployments of UMLsec,
UMLchange, and CARiSMA.

Integrability of design modelling solution | version 1.0 |
page 48 / 66

Glossary and acronyms

Asset Definition

An asset is any resource that has value for the organism and which is necessary for
the accomplishment of its goals. It is possible to distinguish primary assets and
supporting assets.

CARiSMA Definition

CARiSMA is a tool framework for compliance, risk, and security analysis of software
models. It is a reimplemented variant of the former UMLsec tool (www.umlsec.de) and
has a plug-in architecture that makes it extensible for different modelling languages
(including but not limited to UML2 and BPMN) and a broad range of analyses.
CARiSMA is integrated into Eclipse and can thus be integrated into many modelling
tools, such as TOPCASED or Papyrus MDT.

Within SecureChange the tool has been extended with evolution support. Possible
evolutions of a software model can be expressed using the UMLchange notation and
based thereon security properties can be checked on all evolution paths.

Essential Element (EE) Definition

Rinforzando’s name for primary asset.

Primary Asset Definition

A primary asset is information or a process deemed important by the organisation. The
system security risk manager assesses its security needs, but not its vulnerabilities.

Rinforzando Definition

Rinforzando is a Thales security risk assessment modelling tool that is both tightly and
loosely integrated with the Thales SOA Modelling Suite (SMS), a tool suite which is
representative, in terms of technical foundations, of the Thales corporate mainstream
system engineering workbench. It is loosely integrated because Rinforzando can easily
be used as a standalone risk assessment tool. It is tightly integrated because it can
directly reference artefacts within the mainstream system engineering models and
ensure the consistency of the risk assessment model with the mainstream system
engineering models, irrespectively of the phase. In SecureChange, Rinforzando was
used during the design phase, but it can also be used during user need analysis,
detailed design, deployment, operation & maintenance or disposal.

SOA Modelling Suite (SMS) Definition

The purpose of the Thales SOA Modelling Suite is to capture the different concerns
related to service oriented architecture specifications and implementations. SMS is a

Integrability of design modelling solution | version 1.0 |
page 49 / 66

Thales Research & Technology in-house prototype on which work is still on-going.
Ultimately, it shall provide its users with domain specific languages (DSLs), as well as
their corresponding graphical representations, that allow specifying efficiently SOA
concerns. Such DSLs are designed by capturing the concepts associated with SOA
standards, technologies and Thales engineers’ specific requirements. The Thales SOA
Modelling Suite already comprises some code-level WS-security policy generation
capabilities.

Within the SecureChange project, the Thales Risk Assessment Domain Specific
Modelling Language, implemented in the Rinforzando tool, has been integrated with
SMS. The integrated result has been used to model part of the ATM case-study (WP1).

Supporting Asset Definition

A supporting asset is an asset supporting primary assets, e.g. information systems,
organisations, premises. The system security risk manager assesses its vulnerabilities,
but not its security needs.

Target Definition

Rinforzando’s name for supporting asset.

Integrability of design modelling solution | version 1.0 |
page 50 / 66

References

[1] Fabio Massacci, Fabrice Bouquet, Elizabeta Fourneret, Jan Jurjens, Mass S.
Lund, Sébastien Madelénat, Jan Tobias Muehlberg, Federica Paci, Stéphane Paul,
Frank Piessens, Bjørnar Solhaug, Sven Wenzel, Orchestrating Security and
System Engineering for Evolving Systems, Security, Privacy and Trust Scientific
Track, 4th European Conference ServiceWave’11, Poznan, Poland, 27 October
2011.

[2] Arcadia method for architecting & design in system / software definition V4.0 –
Reference Manual, J.-L. Voirin, X. Le Roux, ref. DAE001966-00, 1 September
2008 [Thales confidential in industry].

[3] System-EM handbook, The Thales system engineering methodology, version 2.0,
ref. 87100098/E/C/09, December 2009 [Thales confidential in industry].

[4] Systems and software engineering -- Architecture description, ISO/IEC/IEEE
42010:2011,

[5] Harmonized Threat and Risk Assessment (TRA) Methodology, Communications
Security Establishment (CSE) Canada, October 23, 2007.

[6] Vikash Katta, Tor Stalhåne, A conceptual model of traceability for safety systems,
Poster session, 2nd International Conference on Complex Systems Design &
Management (CSDM), December 7-9, 2011, Paris, France.

4 Appendices

4.1 Thales prototype installation manual
This section deals with the installation of the Risk Assessment viewpoint components.

The Risk Assessment viewpoint works on the Thales
step is to launch this environment. Once the environment has be

• Click Help > Install New Software...

Figure 24: Help menu

• A “Install” window opens.

Figure 25: Install window (1/3)

Integrability of design modelling solution

Appendices

Thales prototype installation manual
deals with the installation of the Risk Assessment viewpoint components.

The Risk Assessment viewpoint works on the Thales SMS 3.1 environment. The first
step is to launch this environment. Once the environment has been launched:

Click Help > Install New Software...

A “Install” window opens. Click on the Add button.

Integrability of design modelling solution | version 1.0 |
page 51 / 66

deals with the installation of the Risk Assessment viewpoint components.

3.1 environment. The first
en launched:

• An “Add Site” window opens.
Assessment viewpoint, by clicking on
repository.

Figure 26: Add Site window

• The “Install” window shows the feature contained in the archive file.
analysis feature, and unchecked

Figure 27: Install window (2/3)

• Click Finish and follow the instructi
the installation.

Integrability of design modelling solution

An “Add Site” window opens. Select the archive file that contains the Risk
Assessment viewpoint, by clicking on Archive button. Then enter a name for that

The “Install” window shows the feature contained in the archive file.
, and unchecked Group items by category option. Click

Click Finish and follow the instructions. Restart the environment

Integrability of design modelling solution | version 1.0 |
page 52 / 66

ile that contains the Risk
enter a name for that

The “Install” window shows the feature contained in the archive file. Check Risk
option. Click Next >.

after completing

Integrability of design modelling solution | version 1.0 |
page 53 / 66

Figure 28: Install window (3/3)

The Risk Assessment viewpoint is now installed on the Thales SMS 3.1 environment.

4.2 Thales prototype operator handbook (extract)
The Thales risk assessment tool is a complex and complete tool. The objective here is
not to provide the complete operator handbook to support a risk assessment study.

The Thales risk assessment tool is designed to be used in conjunction with the Thales
SOA Modelling Suite (SMS), but it can also be used as a stand-alone tool.

In line with the scope of this deliverable, this section only describes the parts of the RA
tool that are specific to its use in conjunction with SMS. However, a flavour of the
complete tool is given in Figure 29.

Integrability of design modelling solution | version 1.0 | page 54 / 66

Figure 29: The risk assessment overview diagram

Integrability of design modelling solution | version 1.0 |
page 55 / 66

4.2.1 Risk assessment study initialisation

This section explains how to create a new risk assessment study and how to link it to
an existing SMS study.

The screenshot below shows an existing SOA study, called SOA-DAY, with an “.aird”
associated file.

Figure 30: SMS project with its local session

The first step is to create the Risk Assessment model. To do that, click File > New >
Other...

Figure 31: File > New menu

Select eMDE RAST Model in MDE Toolkit section. Click Next >.

Integrability of design modelling solution | version 1.0 |
page 56 / 66

Figure 32: New window (1/3)

Select the parent folder where the new RAST model will be stored. Then, enter a file
name for the study. Click Next >.

Figure 33: New window (2/3)

Select the model object to create (Risk Analysis in our case). Click Finish.

Integrability of design modelling solution | version 1.0 |
page 57 / 66

Figure 34: New window (3/3)

Integrability of design modelling solution | version 1.0 | page 58 / 66

Figure 35: The risk assessment study (RAST model)

The RAST model is now created. Fill the date, name and version properties of the model.

Integrability of design modelling solution | version 1.0 |
page 59 / 66

It is still needed to link the newly created RAST model with the SOA study. To do that,
right click on the Local Session folder in the Model Content View. Then click Add
Semantic Resource.

Figure 36: Add Semantic Resource menu

Select Add existing resource. Click Finish.

Figure 37: Add Semantic Resource window

Select the resource to add by clicking on Browse workspace...

Integrability of design modelling solution | version 1.0 |
page 60 / 66

Figure 38: Select resources to add window

Select the created RAST model. Click OK.

Figure 39: File selection window

Click OK on the Resource to add Window to finish.

The last step is to select viewpoints. The new resource (RAST model) allows selecting
the Risk Assessment and the Risk Assessment for SMS viewpoints32. Select both and
click Finish.

Figure 40: Viewpoints selection window

32 The others are SMS viewpoints, and should already be selected.

Integrability of design modelling solution | version 1.0 |
page 61 / 66

The risk assessment viewpoint is the main viewpoint: it provides full support for the risk
assessment activities. It is not explained herein.

The Risk Assessment for SMS viewpoint adds the capability to link elements from the
SMS study to the Risk Assessment study and to maintain the consistency between
both models. This viewpoint is detailed in §4.2.2.

4.2.2 The “Risk Assessment for SMS” viewpoint

The risk assessment tool offers multiple types of diagrams, the main one being the “RA
Overview”. To use the additional functions provided by the Risk Assessment for SMS
viewpoint, it is needed to activate the SMS Layer in the layers selection list of the RA
Overview.

Figure 41: Selection of the SMS layer

The selection of the SMS layer provides new tools in the palette, cf. Figure 42. In
particular:

• the Import section of the tool palette is extended with the two new tools to import
existing primary and supporting assets33 from the SMS study;

• primary and supporting assets can be created with specific types, like data store,
ESB, firewall or other SMS concepts, so that they can latter be associated with
SMS elements.

33 Note that primary and supporting assets are called “essential element” and “target” in the tool.

Integrability of design modelling solution | version 1.0 |
page 62 / 66

Figure 42: Tool palette

To import a primary or supporting asset from SMS, select the adequate tool from the
palette and click on the RA overview background. An Import Security Concept(s)
window opens.

Integrability of design modelling solution | version 1.0 |
page 63 / 66

Figure 43: Import security concept(s) window

This window shows, organised as a tree, all the existing SMS elements:

• the elements that cannot be selected, because inadequate for the function, are
shown in grey;

• the elements that have already been selected are shown in blue;

• the elements that can be usefully selected are shown in black.

The elements shown in this table are directly extracted from the SMS study. They are
always up-to-date, and colour filtered according to precisely defined criteria (cf. Figure
44).

Integrability of design modelling solution | version 1.0 |
page 64 / 66

Figure 44: Example of mapping of supporting assets with SMS elements

When a SMS element is imported into the risk assessment model, a proxy is created
with the same name.

Figure 45: Examples of elements imported from SMS

In SMS, it is possible to visualise which elements have been selected by the security
expert during the risk assessment. For this, it is necessary to activate the relevant
layers (cf. Figure 46).

Integrability of design modelling solution | version 1.0 |
page 65 / 66

Figure 46: SMS annotations related to the selection of element in the risk assessment

Here, it can be seen that the “Staff physical arrival” process has been selected as a
primary asset, and that the “Access control DB” data store has been selected as a
supporting asset.

4.3 Quick insight on the prototype architecture
The architecture chosen for the risk assessment viewpoint meets a flexibility
requirement: the tool can be run as standalone, or can be connected to a system
engineering modelling tool to take advantage of the there-defined system models.

The current prototype is based on Eclipse and was developed under Obeo Designer.

The connexion with a system engineering modelling tool based on Eclipse is taken in
charge by EMF itself. The figure below shows the proxy architecture implemented in
this case.

The green tool is the standalone risk assessment viewpoint. It is possible to define
assets or elements of a system (square green boxes) as well as self-borne security
concepts. The risk assessment viewpoint is accessible to the user through its own set
of diagrams.

Integrability of design modelling solution | version 1.0 |
page 66 / 66

Figure 47 : Proxy architecture used in the case of an Eclipse based System modelling tool

The purple tool is a system engineering modelling tool such as SMS or Papyrus.

The connectivity between the risk assessment viewpoint and the system engineering
modelling tool is handled simply through EMF references by means of the orange
proxies implementing extended rules and algorithms, as well as additional layers
annotating the system modelling tool diagrams (the purple diagrams).

